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Abstract. A continuous expression for the spin-spin correlator of the 2D bond-dilute k ing  
model is considered. It is shown that its evaluation through straightforward use of RG 

techniques leads to inconsistent results. Connections with related results in the literature 
are discussed. 

The study of disordered systems attracted a lot of attention some years ago [l]. A 
criterion-the so-called Harris criterion [2]-has been developed, which allows one 
to estimate the effects of the introduction of impurities on the critical behaviour of the 
pure system. However, it cannot give even a qualitative estimate in the case of the ZD 

Ising model, because the specific heat of this system diverges logarithmically at the 
critical point. A few years ago, Dotsenko and Dotsenko [3] (hereafter referred to as 
DD) studied a dilute version of the Ising model and were able to compute the exact 
leading singularities of thermodynamical quantities. Their results have generated a lot 
of controversy: the behaviour of the specific heat has been both confirmed [4-71 and 
questioned [8]; their use of the replica trick has been found to be either invalid [9] 
or valid [lo] by different authors. Recently the behaviour of the spin-spin correlation 
function was also objected to [7]. 

In this work we will focus on this last question. We will present a detailed derivation 
of the result from [3] for the behaviour of the correlation function. Our aim is to show 
that there is some inconsistency in their calculational method, which manifests itself 
as a violation of Schwartz's inequality. A brief account of this result, which supports 
the conclusions of [7], has already been included in a comment [ 111 to that work; we 
feel, however, that it is worthwhile to present a complete discussion of the technical 
questions involved. 

The model considered in [3] is the ZD bond-dilute Ising model, 

X = - C J  piu, (U8 = *1) 
(0)  

where Jl, (i, j nearest neighbours) is a random variable with a binary distribution 
P ( J v )  = (1 - c)6(J l ,  - J ) +  c S ( J v )  (c  is the concentration of impurities). DD used the 
replica trick to perform the quenched average over the disorder and, for small c, they 
mapped the resulting model onto the N + 0 limit of the O( N )  Gross-Neveu model: 

r 
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with $A a real fermion field, m - ( T  - Tc)/ T, and g - c. They showed that the disorder- 
averaged spin-spin correlator at criticality is given by 

where the average on the RHS is taken with respect to the measure defined in (1) with 
m = 0. The index 1 to $ refers to the first replicated fermion species, and the limit 
N + 0 is implicitly assumed. 

By using RG techniques, DD were able to compute the exact leading behaviour of 
both the specific heat C for T -  T,, and the correlator in (2) for R + m .  They found 

and 

The strong modification in the behaviour of the correlator with respect to the pure 
Ising model ((uouR) - R-lI4) is remarkable since, as DD themselves showed, the 
introduction of impurities is a marginally attractive perturbation to the pure system. 
This becomes apparent by studying the flow of the renormalised coupling constant 
g(A) in the Gross-Neveu model, which for N - 0  goes like l / ln  A for large scales 
A +CO (see (13) below). 

Recently Shankar [7] has reconsidered this problem. Following a simpler route, 
which involves using bosonisation techniques, he confirmed the result (3) for the 
specific heat. He was also able to compute (uOuR)* as given by 

(uouR)2 = (exp i.ir joR dx jy(x)) ( 5 )  

where, due to the squaring, the integration measure corresponds to the U( N )  Gross- 
Neveu model (complex fermions), and jy = $lyot,bl is the fermion charge. Using 
Schwartz’s inequality his result provides a bound for the correlator behaviour: 

which contradicts the result of DD, (4). Note that in ( 5 )  it is assumed that one can 
replace $,$, by jy in the line integral (compare (2) and ( 5 ) ) ,  which has been proved 
to be true in the non-interacting theory [12] (concerning this point see the discussion 
in [ l l ]  and its reply by Shankar). This replacement is needed in order to transform 
the non-local operator into a two-point correlation function after bosonisation. 

The simplicity of Shankar’s calculations suggests that there might be a methodologi- 
cal or computational error in the work of DD. In view of this, we were led to restudy 
their derivation of (4). Those authors employed an early version [13] of the RG 

approach to obtain their results; we used a slightly different field-theoretical approach 
following ideas first discussed by Zinn-Justin [ 141. 

We have considered the ensemble average s power (s = 1,2) of the correlation 
function as given by 



RG approach to 20 dilute systems 313 

For s = 1 this equation coincides with ( 2 ) ;  for s = 2 one has to use complex fermions 
in computing the average on the RHS, as in ( 5 ) .  Note, however, that we do not change 
the nature of the operator under the line integral; this will enable us to check the 
consistency of their calculations and, eventually, to compare the result with the bound 
given in (6). 

By expanding the exponential in (7)  in a formal series and taking the logarithm to 
retain only connected diagrams we get 

F, =In  ( V ~ C T ~ ) ~  = dx i r ( " ) (x l . .  . x,) 

where the I""'(x,) are n-point vertex functions of the composite operator For 
renormalisation purposes we decompose iI$, = R I  + 4. $, with the operators R I  = 
4, $, - (cr. 41 N, and & qb = X A  &AqbA transforming independently under irreducible 
representations of the symmetry group. This leads us to generalise (8) in the form 

where r("3m)(x,)  contains m insertions of RI  and ( n  - m )  insertions of (cl. qb. The 
function f ( x )  = 6(x,)6(xl)8(R -x l )  is introduced to extend the line integral to an 
integration over the whole 2~ space; in the following it dan be thought of as a regularising 
function. Notice that F,( t ,  = 1, t ,  = 1) = F, and that (9) resembles the expansion of a 
theory away from the critical point in terms of the critical theory [ 141. 

Going to momentum space and using the RG properties of the cut-off bare functions 
r(n,m)( p t ,  A) it is easy to show that F,( t l ,  f , )  satisfies 

where C , ( g ,  t )  is related to the additive renormalisation constants associated to the 
r ( 2 3 m ) ( p ,  A) functions (see (15) below and the comment following it). The p and y 
functions are defined as usual by 

d 1 
P ( g )  = A z g )  =- (2-sN)g'  

gn. l r  

The solution of (10) can be expressed in the standard way in terms of an arbitrary 
scale parameter A as 

with the running couplings 
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and 

g 
[1+  (1/7r)(2 - s N ) g  In A ] '  d h )  = 

Notice that, for N < 1, t , ( A )  and g(A) tend to zero at  large scales, i.e. we are dealing 
with an  asymptotically free theory in the infrared; this property allows one to obtain 
the exact leading behaviour of F, for R + 00. This can be done simply by expanding 
the RHS of (12) to second order in t , ( A ) ,  which is equivalent to retain only the n = 2 
term in (8) and  replacing 

To obtain this result we considered the standard RG equations for p ,  A) ,  which, 
in addition to the ,B and y functions, (12), requires the knowledge of the additive 
renormalisation constants 

B"(g)  = A - a r(2,m)(p, g, A )  + O ( g )  = ~ ( m  - [ ( m  - 2 )  N + m( 1 --i)]. 
ah ir 

In the above approximation, the N -+ 0 limit of (14) gives 

Without being particularly explicit in this part of their calculations, DD seem to 
ignore the second line terms in the above equation, which produce the inhomogeneity 
in (10). However, they will not change the final result. Going back to coordinate 
space and  choosing the scale parameter A = lx - y l A ,  with a suitable ultraviolet regulari- 
sation for Ix - yI - l / A  in the resulting expression we get 

For s = 1 this is exactly the DD result for the correlator, (4). (In passing we note that, 
to obtain this behaviour, a linear divergence with R has been dropped out; the same 
occurs when computing the correlator in the pure Ising model by similar continuum 
methods [l5]. The inhomogeneous terms in (10) contribute to this linear divergence.) 
For s = 2  we can see that the Schwartz inequality ( ( rOrR) )2~( rorR)2  is violated, as 
stated above. This is related to the presence of the factor s multiplying the log-log 
term in (15), which comes from the renormalisation of t. Notice that the same violation 
occurs for finite (though small) N, i.e. it is not a problem associated with the N + 0 limit. 
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It is also interesting to apply the above method to the evaluation of the averaged 
square of the correlator as given in Shankar’s work, (5). One is then led to consider 
vertex functions of the operator j y  = &, yo+l .  In this case, in the renormalisation of 
the parameters t ,  the potentially divergent diagrams vanish due  to the presence of the 
additional yo  matrix. In other words, the corresponding anomalous dimension for this 
operator is zero, which is consistent with the fact that j y  is a conserved current. The 
expansion equivalent to (8) cannot in principle be cut at n = 2 ;  the zero-order terms 
in g ( h )  give the pure behaviour R I / ’ ,  the contributions coming from O ( g ( h ) )  terms 
produce corrections of the form (In R)“/  R”’, in agreement with Shankar’s result, (6). 
Note that no inconsistencies appear when considering, for instance, ( c T , , ~ ~ ) ~ ,  because 
no additional factor of two comes from the renormalisation of t unlike in (16). 

In conclusion, we have presented a detailed derivation of the results first obtained 
by DD. We have found that the straightforward use of the RG approach, as employed 
in [3], gives incorrect results in evaluating the non-local operator in ( 7 ) .  This raises 
an  interesting question concerning the correct use of the RG approach to study the 
behaviour of such non-local operators. We have also shown that the method gives 
consistent results in the evaluation of ( 5 ) ,  in agreement with independent calculations 
[7]. The explanation of the above discrepancies constitutes a technical problem which 
deserves further investigation. 
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Nore added. After completion of this work we received a preprint of a comment to [7] by A W W Ludwig 
where the behaviour of the s power of the correlation function (r,,rR)’ - R-’”(ln R ) \ ‘ ’ - ’ l ’ K  I S  ’ reported. 
This result was found following a different approach, similar to the method developed in [6]. 
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